Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communication, Institute of Information Photonics and Optical Communication, Beijing University of Posts and Telecommunications, Beijing 100876, China
International telecommunication union (ITU) recently has standardized ultra-high definition television (UHD-TV) with a resolution which is 16 times more than that of current high definition TV. Increasing the efficiency of video source coding or the capacity of transmission channels will be needed to deliver such programs by passive optical network (PON). In this paper, a complete passive co-existence of 10 Gbit-PON (XG-PON) and single carrier 40 Gbit-PON (XLG-PON) for overlay of UHD-TV distribution to 32 optical network units (ONUs) on broadcast basis is presented. The results show error free transmission performance with negligible power penalty over a 20 km bidirectional fiber.
光电子快报(英文版)
2013, 9(3): 221
Abid Munir 1,2,*XIN Xiang-jun 1,2,3LIU Bo 1,2,3Abdul Latif 1,2[ ... ]Shahab Ahmad Niazi 1,2
Author Affiliations
Abstract
1 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
3 Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876, China
In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length of the system. This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers. We analyze numerically all the parameters of fiber, which could impact intermodal delay in few-mode fibers and identify the conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.
光电子快报(英文版)
2012, 8(2): 138

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!